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Abstract. Dynamical chiral-symmetry breaking (DCSB) in QCD is investigated in the Schwinger-Dyson
(SD) formalism based on lattice QCD data. From the quenched lattice data for the quark propagator
in the Landau gauge, we extract the SD integral kernel function, the product of the quark-gluon vertex
and the polarization factor in the gluon propagator, in an Ansatz-independent manner. We find that
the SD kernel function exhibits the characteristic behavior of nonperturbative physics, such as infrared
vanishing and strong enhancement at the intermediate-energy region around p ∼ 0.6GeV. The infrared and
intermediate energy region (0.4GeV < p < 1.5GeV) is found to be most relevant for DCSB from analysis
on the relation between the SD kernel and the quark mass function. We apply the lattice-QCD–based SD
equation to thermal QCD, and calculate the quark mass function at the finite temperature. Spontaneously
broken chiral symmetry is found to be restored at high temperature above 110 MeV.

PACS. 12.38.Aw General properties of QCD (dynamics, confinement, etc.) – 12.38.Lg Other nonpertur-
bative calculations – 12.38.Mh Quark-gluon plasma – 12.38.-t Quantum chromodynamics

1 Introduction

Quantum chromodynamics (QCD) has been accepted
as the fundamental theory of the strong interaction of
hadrons. Due to the asymptotic freedom of QCD, the
perturbative calculation is applicable to the high-energy
process in the hadron reactions. In contrast, low-energy
QCD becomes a strong-coupling gauge theory, and ex-
hibits interesting nonperturbative phenomena such as
color confinement and dynamical chiral-symmetry break-
ing (DCSB) [1–3].

The QCD running coupling constant αs(p
2) is gov-

erned by the QCD scale parameter, ΛQCD(MS) = 216 ±

25MeV, evaluated in the MS scheme of the perturba-
tive QCD with Nf = 5 [4]. A rough perturbative es-
timation leads to αs((0.5GeV)2) ∼ 1, which suggests
that the perturbation theory would break down at around
p ∼ 0.5GeV. In other words, this is expected to be the mo-
mentum scale in which nonperturbative effects appear due
to the strong coupling.

DCSB is one of the outstanding nonperturbative fea-
tures in QCD. The chiral symmetry, which the QCD La-
grangian possesses in the massless quark limit, is spon-
taneously broken in the nonperturbative QCD vacuum.
The nontrivial QCD vacuum is characterized by the quark
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condensate 〈q̄q〉 ' −(225± 25MeV)3 [5], which is caused
by attractive interaction acting on the quark-antiquark
pair like Cooper-pair condensation in superconductiv-
ity [1]. Dynamical content of DCSB has been demon-
strated by using the effective models of QCD such as
the Nambu-Jona-Lasinio model [1,6] and the instanton
vacuum model [7]. These models suggest that the al-
most massless quark acquires a large effective mass of
M ' 300MeV as a result of DCSB and behaves as a
massive constituent quark [8] in the infrared region. The
pion is identified as the Nambu-Goldstone boson associ-
ated with DCSB and satisfies the low-energy theorem [9],
where the pion decay constant, fπ ' 93MeV, is also a rel-
evant quantity characterizing DCSB. In this way, DCSB
is characterized by several quantities, the quark conden-
sate 〈q̄q〉 ' −(225 ± 25MeV)3, the effective quark mass
M ' 300MeV and the pion decay constant fπ ' 93MeV.

In the study of DCSB based on QCD, the Schwinger-
Dyson (SD) equation [2,3,10–12] and the Bethe-Salpeter
equation [13], which are expressed as integral equations,
have been used to incorporate infinite-order effects on the
gauge coupling. One of the most popular approaches, how-
ever, is to use the free gluon propagator and the one-
loop running coupling for the quark-gluon vertex in the
SD equation. This simplification may result in neglect-
ing possible nonperturbative effects in the infrared region.
In several studies, the infrared nonperturbative effect was
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modeled and was taken into account in the SD equa-
tion [14–16], but the models contains some unjustified as-
sumptions. Another standard method to incorporate non-
perturbative effects is lattice QCD. Numerical evaluation
of the chiral condensate on the lattice shows DCSB. It
also shows chiral symmetry restoration at finite tempera-
ture [17]. Recently, the nonperturbative quark and gluon
propagators have been calculated in lattice QCD Monte
Carlo simulations. They motivated the present study.

In this paper, we attempt to combine the SD ap-
proach and the lattice QCD result for the quark and gluon
propagators as the first step of understanding the hadron
physics in terms of quarks and gluons. Our aim is to in-
clude information from lattice QCD calculation as much
as possible to the SD equation and to investigate the prop-
erties of DCSB and its constraints on the various charac-
teristic scales mentioned above. In the course of this study,
we find that a strong enhancement is necessary in the inte-
gral kernel of the SD equation, which indicates the indis-
pensable role of nonperturbative physics at medium and
low momentum area. We further investigate the behaviors
of the solution of the SD equation at finite temperature
including the most fundamental temperature dependences
of the integral kernel and the quark propagator.

The paper is organized as follows. In sect. 2, the quark
and the gluon propagators resulted from lattice QCD cal-
culations and their parameterizations for our calculation
are presented. In sect. 3, formulation of the SD equation of
the quark propagator for Euclidean momenta is presented.
We fix the gauge to the Landau gauge according to the
lattice calculation and assume dominance of the Lorentz
vector part of the gluon-quark vertex. Then we define the
integral kernel function for the Landau-gauge SD equa-
tion, which corresponds to the product of the quark-gluon
vertex and the polarization factor in the full gluon prop-
agator. In sect. 4, we use the lattice QCD data of the
quark propagator and invert the SD equation to extract
the kernel function and study its properties. In sect. 5, we
consider various modifications of the SD kernels in order
to identify which part of the propagator is most respon-
sible for DCSB. In sect. 6, the SD equation is solved for
finite temperature and the results are presented. Section 7
is devoted to the summary and concluding remarks.

2 Propagators of quarks and gluons in lattice

QCD

In this section, we summarize the recent lattice QCD re-
sults for the quark and the gluon propagators. The lattice
QCD Monte Carlo simulation is the first principle calcula-
tion of the strong interaction directly based on QCD in the
Euclidean metric. In these years, lattice QCD calculations
have been performed for the quark and gluon propagators
in the Landau gauge at the quenched level [18–20]. These
propagators are considered to include all the nonpertur-
bative effects in quenched QCD.
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Fig. 1. The lattice QCD result for the polarization factor
d(q2) = q2D(q2) in the gluon propagator in the Landau gauge.
The symbols denote the lattice data taken from ref. [18], and
the curve denotes the fit function of d(p2) in eq. (2).

The Euclidean gluon propagator in the Landau gauge
is generally expressed by

Dµν(p
2) =

d(p2)

p2

(

δµν −
pµpν
p2

)

, (1)

where we refer to d(p2) as the “polarization factor” in the
nonperturbative gluon propagator.

We find that the quenched lattice QCD data [18] for
the polarization factor d(p2) is well described by the ana-
lytic function of

d(p2) = Zg
p4 + ap2

p4 + αp2 + β
(2)

with a ' 7.887GeV2, α ' 1.254GeV2, β ' 0.7175GeV4

and Zg ' 0.7172, as shown in fig. 1. (In the first reference
of [18], the lattice data are set to satisfy d(p2) = 1 at the
typical lattice cutoff p = 4GeV.)

Note here that there are two remarkable features in
the functional shape of d(p2).

1. The polarization factor d(p2) exhibits the infrared van-
ishing and d(p2) is proportional to p2 in the infrared
region as p < 0.5GeV.

2. The polarization factor d(p2) exhibits a large enhance-
ment in the intermediate-energy region as p ∼ 1GeV.

Next, we summarize the quark propagator S(p) in the
Landau gauge in lattice QCD. The Euclidean quark prop-
agator in the Landau gauge is generally expressed as

S(p) =
Z(p2)

6 p+M(p2)
, (3)

with the quark mass function M(p2) and the quark wave
function renormalization factor Z(p2) [2,3]. In terms of
the quark propagator, DCSB is characterized by the mass
generation as M(p2) 6= 0.
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The quark mass function M(p2) in the Landau gauge
is recently measured in lattice QCD at the quenched
level [19,20], and is reported to be fitted as

M(p2) =
M0

1 + (p/p̄)γ
(4)

with M0 ' 260 MeV, p̄ ' 870 MeV and γ ' 3.04 [19]
in the range of 0 ≤ p ≤ 4GeV in the chiral limit.
The infrared quark mass M(0) = M0 ' 260MeV seems
consistent with the constituent quark mass in the quark
model [8]. Note that the lattice results of the quark mass
function may have ambiguity coming from the chiral ex-
trapolation. In ref. [19], eq. (4) was obtained by the linear
chiral extrapolation of the lattice data. In ref. [21], how-
ever, the authors claimed that the results may change if
they employ an analytic extrapolation towards the chiral
limit, although it depends on the choice of mass depen-
dence of the fitting functions.

As for the quark wave-function renormalization factor
Z(p2) in the Landau gauge, the lattice QCD data [19,
20] show Z(p2) < 1 for small p below a few GeV, and
Z(p2) ' 1 for large p. Quantitatively, the lattice QCD
data [19,20] seem to be fitted as

Z(p2) = 1−
cp2

0

p2 + p2
0

(5)

with p0 ' 1.0GeV and c ' 0.3, although the lattice data
themselves seem somehow unsettled due to the relatively
large statistical error and the systematic error such as a
large lattice-fermion dependence [19,20]. In this paper, we
adopt eq. (5) for the main calculations, and investigate
the effects of the quark wave-function renormalization by
comparing with the calculation with Z(p2) = 1.

3 The Schwinger-Dyson formalism for quarks

The Schwinger-Dyson (SD) equation for the quark prop-
agator S(p) is described with the nonperturbative gluon
propagator Dµν(p) and the nonperturbative quark-gluon
vertex gΓν(p, q) as

S−1(p) = S−1
0 (p)

+CF g2

∫

d4q

(2π)4
γµS(q)Dµν(p− q)Γν(p, q) (6)

in the Euclidean metric. Here, S0(p) denotes the bare
quark propagator, and the color factor of quarks has been
calculated as CF = 4/3.

In several studies for QCD, however, the SD formalism
is drastically truncated: the perturbative gluon propagator
and the one-loop running coupling are used instead of the
nonperturbative quantities in the original formalism. This
simplification seems rather dangerous because some of the
nonperturbative-QCD effects are neglected.

We formulate the SD equation for quarks in the chiral
limit in the Landau gauge. By taking the trace of eq. (6),

one finds

M(p2)

Z(p2)
=

CF g2

4

∫

d4q

(2π)4
Dµν(p− q)

×tr

{

γµ
Z(q2)

6 q +M(q2)
Γν(p, q)

}

. (7)

For the quark-gluon vertex Γ (p, q), one of the desir-
able direction is to use the lattice QCD data. Recently, a
pioneering lattice result was reported for the quark-gluon
vertex Γ (p, q) [22]. At present, however, only limited infor-
mation for the vertex Γ (p, q) is obtained from the lattice
QCD such as Γ (p, p). For the actual calculation of the SD
equation (7), the full information of Γ (p, q) is necessary,
and therefore the present lattice result for the quark-gluon
vertex is not applicable. In addition, no conclusive vertex
form is known yet, although several vertex Ansätze are
theoretically proposed [23–25].

Therefore, we assume the chiral-preserving vector-type
vertex,

Γµ(p, q) = γµΓ ((p− q)2), (8)

which keeps the chiral symmetry properly. Here, this type
of quark-gluon vertex and its approximate form with the
Higashijima-Miransky approximation [2,3] have been fre-
quently used in the studies with the SD equation. Note
also that, to preserve the Ward-Takahashi identity for the
axial vector vertex, the gluon momentum (p−q) should be
taken as the argument of the quark-gluon vertex Γ in the
ladder approximation of the SD and BS equations [26].
In contrast, to be strict, the Higashijima-Miransky ap-
proximation explicitly breaks the chiral symmetry in the
formalism [26].

Using the vector-type quark-gluon vertex in eq. (8),
one obtains

M(p2)

Z(p2)
= CF g2

∫

d4q

(2π)4
Z(q2)M(q2)

q2 +M2(q2)

×Γ ((p− q)2)Dµµ((p− q)2). (9)

In the Landau gauge, the Euclidean gluon propagator
takes the general form of eq. (1) with the gluon polar-
ization factor d(p2). Therefore, eq. (9) is expressed as

M(p2)

Z(p2)
= 3CF g2

∫

d4q

(2π)4
Z(q2)M(q2)

q2 +M2(q2)

×
Γ ((p− q)2)d((p− q)2)

(p− q)2
. (10)

Here, we define the kernel function

K(p2) ≡ g2Γ (p2)d(p2) (11)

as the product of the quark-gluon vertex Γ (p2) and the
gluon polarization factor d(p2). Then, the SD equation is
rewritten as

M(p2)

Z(p2)
= 3CF

∫

d4q

(2π)4
Z(q2)M(q2)

q2 +M2(q2)

K((p− q)2)

(p− q)2
. (12)
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Note that the precise SD kernel K̂SD(p
2) of the SD equa-

tion includes the Coulomb-propagator factor 1/p2 as

K̂SD(p
2) ≡

K(p2)

p2
=

g2Γ (p2)d(p2)

p2
. (13)

In the Landau gauge, several studies use the approxi-
mation of Z(p2) = 1 [2,13,26]. In this approximation, the
SD equation reduces to

M(p2) = 3CF

∫

d4q

(2π)4
M(q2)

q2 +M2(q2)

K((p− q)2)

(p− q)2
. (14)

4 Extraction of the kernel function in the SD

equation from lattice QCD

In most case, the SD equation is used to calculate the
quark propagator using the gluon propagator and the
quark-gluon vertex [2,3]. However, the SD equation is
nothing but the relation among the gluon propagator, the
quark-gluon vertex and the quark propagator.

Then, we find that the SD kernel, the product of the
gluon propagator and the quark-gluon vertex, can be ex-
tracted from the information of the quark propagator us-
ing the SD equation (12). In fact, once the quark prop-
agator is obtained, the SD kernel function K(p2) can be
extracted without any assumption on the functional form
of Γ (p2) or K(p2).

In this section, we extract the kernel function K(p2) =
g2Γ (p2)d(p2) in the SD equation (12) from the quark
propagator obtained in lattice QCD, i.e., the quark mass
function M(p2) in eq. (4) and the quark wave-function
renormalization factor Z(p2) in eq. (5), in an Ansatz-
independent manner.

4.1 Formalism

By shifting the integral variable from q to q̃ ≡ p − q, we
rewrite eq. (12) as

M(p2)

Z(p2)
= 3CF

∫

d4q̃

(2π)4
Z((p− q̃)2)M((p− q̃)2)

(p− q̃)2 +M2((p− q̃)2)

K(q̃2)

q̃2
. (15)

Therefore, we obtain

M(p2)

Z(p2)
=

∫

∞

0

dq̃2Θ(p2, q̃2)K(q̃2), (16)

where Θ(p2, q2) is defined with M(p2) as

Θ(p2, q2) ≡
3CF

8π3

∫ π

0

dθ sin2 θ

×
Z(p2 + q2 − 2pq cos θ)M(p2 + q2 − 2pq cos θ)

p2 + q2 − 2pq cos θ +M2(p2 + q2 − 2pq cos θ)
. (17)

Regarding the momentum squared (p2, q̃2) as suffixes (m,
n), eq. (16) can be rewritten as

Mm

Zm
=
∑

n

ΘmnKn. (18)

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

K
(p

2
)

p2 [GeV
2
]

Fig. 2. The kernel function in the SD equation, K(p2) =
g2Γ (p2)d(p2), extracted from the lattice QCD result of the
quark propagator in the Landau gauge. The calculated data
are denoted by the square symbols, and the solid curve de-
notes the fit function in eq. (22). The dotted curve denotes
the perturbative SD kernel function Kpert(p

2) for comparison.
As remarkable features, K(p2) exhibits infrared vanishing and
intermediate enhancement.

Here, Θmn is a real symmetric matrix on m and n as

Θmn = Θnm ∈ R, (19)

because of Θ(p2, q2) = Θ(q2, p2) ∈ R.
Once the quark mass function M(p2) and the quark

wave function renormalization factor Z(p2) are obtained,
Θ(p2, q2) is calculable with eq. (17), and, using eq. (18),
we can extract Kn directly from Θmn and Mn as

Km =
∑

n

Θ−1
mn

Mn

Zn
. (20)

Since M(p2) and Z(p2) are given by eqs. (4) and (5) in lat-
tice QCD, we can calculate the kernel function K(p2) from
eq. (20) without any assumption of the functional form on
K(p2). For the practical calculation, we discretize the mo-
mentum squared p2 and q̃2 after the proper transformation
as p2 = tan4 α and q̃2 = tan4 β, and solve eq. (18) for Kn.
(See appendix for details.)

The shift of the integration variable in eq. (15) can be
done in the case that the integral is finite. On this point,
the integral of the right-hand side of eq. (15) must be finite
since the left-hand side is obviously finite. Therefore, we
can shift the integration variable safely in eq. (15).

4.2 Numerical result for the kernel function

As shown in fig. 2, we numerically extract the kernel func-
tion K(p2) = g2Γ (p2)d(p2) from the lattice QCD result,
eqs. (4) and (5), for the quark propagator in the Landau
gauge. For the check of the validity, we have confirmed
that the mass function M(p2) in eq. (4) is precisely repro-
duced with the obtained kernel function K(p2).
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As remarkable features, we find “infrared vanishing”
and “intermediate enhancement” in the kernel function
K(p2) in the SD equation [27]:

1. The SD kernel function K(p2) seems consistent with
zero in the very infrared region as

K(p2 < 0.1GeV2) ' 0. (21)

2. The SD kernel function K(p2) exhibits a large en-
hancement in the intermediate-energy region around
p ∼ 0.6 GeV. In fact, K(p2) takes the maximal value
Kmax = 66.86 at p2 ' 0.321GeV2 ' (0.607GeV)2.

These tendencies of infrared vanishing and inter-
mediate enhancement in the kernel function K(p2) =
g2Γ (p2)d(p2) are qualitatively observed also in the direct
lattice-QCD measurement for the polarization factor d(p2)
in the gluon propagator in the Landau gauge [18] as shown
in fig. 1, although the peak position between K(p2) and
d(p2) is largely different. (The shape of the obtained kernel
function K(p2) is also similar to that in refs. [21] and [28]
using a model gluon propagator in terms of infrared van-
ishing and intermediate enhancement, although there is
some quantitative difference on the peak position.)

Note here that we have never used the information
of the gluon propagator such as d(p2) in extracting the
kernel function K(p2). Actually, we only use the quark
propagator to extract the SD kernel K(p2). Nevertheless,
we find in K(p2) the similar tendencies to d(p2), which is
rather nontrivial.

In other words, the properties of infrared vanishing
and intermediate enhancement in the SD kernel function
K(p2) are embedded in the information of the quark prop-
agator, i.e., M(p2) and Z(p2) in eqs. (4) and (5), in an
implicit manner.

The original lattice data for the quark propagator are
limited in the momentum region below 4 GeV due to the
finite lattice spacing. We note however that our obtained
SD kernel K(p2) exhibits a clear perturbative logarith-
mic behavior in the momentum region of 2.5GeV < p <
4GeV, and it is rather difficult to reproduce the SD kernel
K(p2) without the perturbative logarithmic denominator.

As a simple parametrization, the obtained SD kernel
function K(p2) in the region of 0 ≤ p ≤ 4GeV can be
fitted fairly well by

K(p2) =
G(p2)

F (p2)
·

1

β0 ln{(p2 + p2
c)/Λ

2
QCD}

, (22)

with ΛQCD = 220MeV, β0 ≡
(11Nc−2Nf )

48π2 = 11
16π2 and

an infrared cutoff pc ' 2.207ΛQCD. Here, F (p2) and

G(p2) are some polynomials of p2: F (p2) =
∑6

n=0 fn(p
2)n

and G(p2) =
∑6

n=1 gn(p
2)n with f0 = 0.001495, f1 =

−0.03227, f2 = 0.2812, f3 = −1.121, f4 = 2.462, f5 =
−2.498, f6 = 1, g1 = 0.008746, g2 = −0.2288, g3 = 2.020,
g4 = −1.192, g5 = −2.265, g6 = 2.134 in the unit of
GeV−2n. We show this fit function by the solid curve in
fig. 2.
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Fig. 3. The kernel function in the SD equation, K(p2) =
g2Γ (p2)d(p2), extracted from the lattice QCD result of the
quark mass function M(p2) with Z(p2) = 1 in the Landau
gauge (dotted line) and the solid line is the kernel function
with Z(p2) 6= 1 for comparison. Even with Z(p2) = 1, K(p2)
exhibits infrared vanishing and intermediate enhancement.

4.3 The effect of the quark wave-function
renormalization to the SD kernel

To investigate the effect of the quark wave function renor-
malization, we calculate the kernel function K(p2) from
M(p2) with fixed Z(p2) = 1, and show the result in
fig. 3. K(p2) with Z(p2) = 1 takes the maximal value
Kmax = 38.76 at p2 ' 0.368GeV2 ' (0.607GeV)2.

Even with fixed Z(p2) = 1, the kernel function K(p2)
exhibits infrared vanishing and intermediate enhance-
ment, which indicates that these two properties of K(p2)
originate from the behavior of the quark mass function
M(p2) rather than the quark wave function renormaliza-
tion.

Actually, the kernel function K(p2) obtained with
Z(p2) = 1 is rather similar to that obtained with Z(p2) in
eq. (5) in the infrared region, and the effect of the quark
wave-function renormalization factor Z(p2) appears as an
overall factor multiplication to the kernel function K(p2)
in the infrared region.

In this way, the shape of the quark mass function
M(p2) in eq. (4) is considered to correlate with infrared
vanishing and intermediate enhancement in the SD kernel.

4.4 Comparison with the one-loop ladder
approximation

As a popular approach in the SD equation, the pertur-
bative gluon propagator with d(p2) = 1 and the one-loop
running coupling grun(p

2) are frequently used [2,3], and
this treatment corresponds to the usage of the perturba-
tive SD kernel function,

Kpert(p
2) = g2

run(p
2) =

1

β0 ln(p2/Λ2
QCD)

. (23)
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Fig. 4. The quark-gluon vertex function g2Γ (p2). For compar-
ison, the perturbative quark-gluon vertex g2

run(p
2) in the lad-

der approximation is also plotted by the dotted curve. g2Γ (p2)
shows intermediate enhancement.

For comparison, we add by the dotted curve in fig. 3 the
perturbative SD kernel function Kpert(p

2) at the one-loop
level with ΛQCD = 220MeV and Nf = 0 at the quenched
level. Both in the infrared and in the intermediate energy
regions, Kpert(p

2) largely differs from the present result
K(p2) based on lattice QCD. In fact, the simple version of
the SD equation using the perturbative gluon propagator
and the one-loop running coupling would be too crude for
the quantitative study of QCD.

4.5 The quark-gluon vertex function

Here, we extract the quark gluon-vertex function from the
obtained SD kernel function and the gluon propagator cal-
culated by lattice QCD. Using eq. (11), the quark-gluon
vertex g2Γ (p2) is obtained from our obtained SD kernel
K(p2) and the gluon polarization factor d(p2) in eq. (2) as

g2Γ (p2) = K(p2)/d(p2). (24)

We show in fig. 4 the quark-gluon vertex function
g2Γ (p2). For comparison, we also plot in fig. 4 the
perturbative quark-gluon vertex function g2

run(p
2) in the

ladder approximation.
The quark-gluon vertex g2Γ (p2) exhibits intermediate

enhancement around p2 ∼ 0.25GeV2, i.e., p ∼ 0.5GeV,
in comparison with g2

run(p
2), and seems to decrease in the

infrared region as p2 < 0.2GeV2. Note however that the
obtained quark-gluon vertex g2Γ (p2) would be reliable
only for the region of p2 ≥ 0.1GeV2, because both d(p2)
and K(p2) are rather small in the ultra-infrared region of
p2 < 0.1GeV2 and the ratio in eq. (24) becomes uncertain
there in due to the numerical errors in lattice QCD.

5 Relation between DCSB and the SD kernel

In this section, we investigate the correspondence between
the quark mass function M(p2) and the SD kernel func-
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Fig. 5. (a) The infrared quark mass MUV(0;ΛUV)/M0 in the
UV-cut SD equation plotted against the artificial UV-cutoff pa-
rameter ΛUV.M0 ' 260MeV denotes the infrared quark mass.
For ΛUV > 2GeV, almost no effect is observed. For ΛUV <
Λcrit

UV ' 0.9GeV, no DCSB is observed as MUV(p
2;ΛUV) = 0.

(b) The UV-cut SD kernel KUV(p
2;Λcrit

UV) for the critical case
on DCSB. The dotted curve denotes the original SD kernel
function K(p2).

tion K(p2), and discuss the relevant momentum region for
DCSB. In actual, we calculate the quark mass functions
for the following modified SD kernels:

1. An ultraviolet (UV) cutoff for the SD kernel
2. An infrared (IR) cutoff for the SD kernel
3. An intermediate (IM) suppression for the SD kernel

Through the investigation of the UV-cut case, the IR-cut
case and the IM-suppression case for the SD kernel, we
numerically estimate the relevant momentum region for
DCSB. (Note that it is difficult to find out such rele-
vant region in a direct and rigorous manner due to the
nonlinearity of the SD equation.) For simplicity, we per-
form these calculations using the SD equation (14) with
Z(p2) = 1, considering inaccuracy of the present lattice
data for the wave function renormalization Z(p2).

To begin with, we investigate the role of UV region
for DCSB by examining the UV-cut case for the SD
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Fig. 6. (a) The infrared quark mass MIR(0;ΛIR)/M0 in the
IR-cut SD equation plotted against the artificial IR-cutoff pa-
rameter ΛIR. For ΛIR <0.4GeV, there is no significant effect
observed for DCSB. For ΛIR > Λcrit

IR ' 0.53GeV, no DCSB
is observed as MIR(p

2;ΛIR) = 0. (b) The IR-cut SD kernel
KIR(p

2;Λcrit
IR ) for the critical case on DCSB. The dotted curve

denotes the original SD kernel function K(p2).

equation (14). Here, we use the UV-cut SD kernel func-
tion,

KUV(p
2;ΛUV) ≡ K(p2)θ(Λ2

UV − p2), (25)

instead of K(p2). For each ΛUV, we solve the UV-
cut SD equation and obtain the corresponding solution
MUV(p

2;ΛUV) for the quark mass function. We show
in fig. 5(a) the infrared quark mass MUV(0;ΛUV) plot-
ted against ΛUV. For ΛUV > 2GeV, almost no effect
is observed as MUV(p

2;ΛUV) ' MUV(p
2;∞) = M(p2),

which clearly indicates that UV region is not impor-
tant for DCSB. In contrast, a significant reduction of
the quark mass function MUV(p

2;ΛUV) is observed for
ΛUV < 1.5GeV. In particular, for ΛUV < Λcrit

UV ' 0.9GeV,
no DCSB is observed as MUV(p

2;ΛUV) = 0, which
may suggest that the momentum scale of p ∼ 1GeV
plays an important role for DCSB. Figure 5(b) shows
the UV-cut SD kernel function for Λcrit

UV, which is the
critical value on DCSB. This result seems natural be-
cause the strong-coupling nature at the infrared and in-
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Fig. 7. (a) The infrared quark mass MIM(0; c)/M0 in the
IM-suppressed SD equation plotted against the artificial IM-
suppression parameter c. No DCSB is found as MIM(p2; c) = 0
for c < ccrit ' 0.58. (b) The IM-suppressed SD kernel
KIM(p2; ccrit) for the critical case on DCSB. The dotted curve
denotes the original SD kernel function K(p2).

termediate energy regions would be essential for DCSB in
QCD [15,21].

Next, we investigate the role of IR region for DCSB
by examining the IR-cut case with the IR-cut SD kernel
function,

KIR(p
2;ΛIR) ≡ K(p2)θ(p2 − Λ2

IR). (26)

For each ΛIR, we solve the IR-cut SD equation and ob-
tain the corresponding solution MIR(p

2;ΛIR). We show
in fig. 6(a) the infrared quark mass MIR(0;ΛIR) plotted
against the IR cutoff ΛIR. For ΛIR < 0.35 GeV, no signifi-
cant effect is observed for DCSB, according to the infrared
vanishing of the SD kernel. In contrast, a significant mass
reduction appears for ΛIR > 0.4GeV, and no DCSB is
observed as MIR(p

2;ΛIR) = 0 for ΛIR > Λcrit
IR ' 0.53GeV.

These results seem to indicate the relevant role of the in-
frared region as 0.4GeV < p < 0.53GeV for DCSB. Fig-
ure 6(b) shows the IR-cut SD kernel function for Λcrit

IR ,
which is the critical value on DCSB.
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Finally, we investigate the role of the IM enhancement
of the SD kernel for DCSB. The SD kernel function K(p2)
obtained from the lattice QCD data of the quark propa-
gator indicates the IM enhancement, and takes a maximal
value Kmax = 38.76 at p2 ' 0.368GeV2 ' (0.607GeV)2

in the present analysis. (See fig. 4.) Here, we examine the
IM-suppressed SD kernel function,

KIM(p2; c) ≡ Min(K(p2), cKmax), (27)

with a real and positive constant c. For each c, we cal-
culate the quark mass function MIM(p2; c) using the SD
equation (14) with the modified kernel KIM(p2; c). We
show in fig. 7(a) the infrared quark mass MIM(0; c) plot-
ted against c. Of course, for c ≥ 1, one finds KIM(p2; c) =
K(p2) and MIM(p2; c) = M(p2). As c decreases from 1,
MIM(p2; c) rapidly decreases, and no DCSB is found as
MIM(p2; c) = 0 for c < ccrit ' 0.58. Figure 7(b) shows the
IM-suppressed SD kernel function for ccrit, which is the
critical value on DCSB. This would indicate that the in-
termediate enhancement of the SD kernel in the region of
0.2GeV2 < p2 < 0.8GeV2, i.e., 0.4GeV < p < 0.9GeV,
plays an important role for DCSB.

From the above three analyses, the relevant momen-
tum region for DCSB is considered to be the IR and the
IM regions as

0.4GeV < p < 1.5GeV. (28)

6 Chiral symmetry at finite temperature

Finally, we demonstrate a simple application of the lattice-
QCD–based SD equation to chiral symmetry restora-
tion in finite-temperature QCD, using the Matsubara
imaginary-time formalism.

In this formalism, the quark field q(x, τ) and the
gluon field Aµ(x, τ) at a finite temperature T obey the
anti-periodic and periodic boundary condition in the
imaginary-time direction, respectively, as

q(x, τ + 1/T ) = −q(x, τ),

Aµ(x, τ + 1/T ) = Aµ(x, τ). (29)

Accordingly, the temporal momentum variable p0 is dis-
cretized to be the Matsubara frequency,

p0 → (2n+ 1)πT ≡ ωn for quarks,

p0 → 2nπT for gluons, (30)

and the corresponding integration over p0 becomes the
summation over the Matsubara frequencies as

∫

∞

−∞

dp0

2π
→ T

∞
∑

n=−∞

(31)

in the SD equation.
As a result, the SD equation for the thermal quark

mass function MT (p
2, ω2

n) of the Matsubara frequency
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Fig. 8. (a) The thermal infrared quark mass MT (p
2 = 0, ω2

0)
plotted against the temperature T . Chiral symmetry restora-
tion is found at a critical temperature Tc ' 110MeV.

ωn ≡ (2n+ 1)πT is given as

MT (p
2, ω2

n)

Z(ω2
n + p2)

= 3CFT
∞
∑

m=−∞

∫

d3q

(2π)3

×
Z((ωn − ωm)2 + (p− q)2)MT (q

2, ω2
m)

ω2
m + q2 +MT (q2, ω2

m)

×
K((ωn − ωm)2 + (p− q)2)

(ωn − ωm)2 + (p− q)2
. (32)

Here, MT (p
2, ω2

n) depends only on p2 and ω2
n, because

of the three-dimensional rotational invariance and the
imaginary-time reversal invariance of the system.

Using the kernel function K(p2) obtained in sect. 4, we
solve the thermal SD equation (32) for MT (p

2, ω2
n). We

find that the quark wave function renormalization effect
is rather small for the mass function MT (p

2, ω2
n) and also

the critical temperature Tc. Therefore, we set Z(p2) =
1 in the following calculation for simplicity, considering
inaccuracy of the present lattice data for the wave function
renormalization Z(p2).

Figure 8 shows the numerical result for the thermal
infrared quark mass MT (p

2 = 0, ω2
0) plotted against the

temperature T . Chiral symmetry restoration is found at
a critical temperature Tc ' 110MeV, which seems rather
small in comparison with the critical temperature Tc =
260–280MeV of the quenched QCD phase transition [29].

Figure 9 shows the thermal quark mass function
MT (p

2, ω2
n) at various Matsubara frequencies at a low

temperature T = 0.6Tc = 60MeV and at a high tem-
perature T = 0.9Tc = 90MeV. One finds the following
tendencies for the thermal quark mass MT (p

2, ω2
n).

1. At fixed T , MT (p
2, ω2

n) is a decreasing function of p2

for each Matsubara frequency n, and MT (p
2, ω2

n) de-
creases with ω2

n for each value of p2.
2. For fixed n and p2, MT (p

2, ω2
n) decreases with the

temperature T .
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Fig. 9. The thermal quark mass function MT (p
2, ω2

n) at
various Matsubara frequencies n = 0, 1, 2, 3 obtained from
the thermal SD equation for (a) a low-temperature case of
T = 0.6Tc ' 60MeV and (b) a high-temperature case of T =
0.9Tc ' 90MeV. For comparison, we addMT (p

2+ω2
n−ω

2
0 , ω

2
0)

by the dashed curves.

As an interesting dependence of ω2
n and p2, we find at

each T the “covariant-like relation” [30] for the thermal
quark mass function as

MT (p
2, ω2

n) ' M̃T (p
2 + ω2

n) = M̃T (p̂
2). (33)

Here, p̂2 ≡ p2 + ω2
n = p2 + {(2n+ 1)πT}2 corresponds to

the four-dimensional momentum squared, p2 = p2 + p2
0,

and actually reduces into p2 at T = 0. For the demonstra-
tion of the relation in eq. (33), we compare MT (p

2, ω2
n)

with MT (p
2 + ω2

n − ω2
0 , ω

2
0) in fig. 9, and find an approxi-

mate coincidence of MT (p
2, ω2

n) 'MT (p
2 + ω2

n − ω2
0 , ω

2
0)

at each n even near the critical temperature Tc.

In this calculation, we have included only the (anti-)
periodicity in the imaginary-time direction, and have ig-
nored the nontrivial thermal effects on the quark and
gluon propagators and vertex functions. Nevertheless, we
observe chiral symmetry restoration at high temperature
and obtain a rough estimate of the critical temperature.
For more consistent calculation, it would be interesting

to use the lattice QCD results on the quark and gluon
propagators at finite temperature.

7 Summary and concluding remarks

We have investigated the Schwinger-Dyson (SD) formal-
ism based on lattice QCD data, and have studied dynam-
ical chiral-symmetry breaking (DCSB) in QCD. We have
extracted the SD kernel function K(p2), which is the prod-
uct of the quark-gluon vertex and the polarization factor
in the gluon propagator, in an Ansatz-independent man-
ner from the quenched lattice data for the quark prop-
agator in the Landau gauge. We have found that the
SD kernel K(p2) exhibits infrared vanishing and a large
enhancement at the intermediate-energy region around
p ∼ 0.6GeV.

We have investigated the relation between the quark
mass function and the SD kernel, considering the impor-
tant scale region for DCSB. Detailed examination has re-
vealed that the infrared and the intermediate energy re-
gions as 0.4GeV < p < 1.5GeV would be relevant for
DCSB. The “intermediate kernel enhancement” is found
to be also important for DCSB.

We have applied the lattice-QCD–based SD equation
to thermal QCD, and have calculated the quark mass func-
tion at the finite temperature. We have found that spon-
taneously broken chiral symmetry is restored at the high
temperature above 110 MeV.

In this paper, we have mainly investigated DCSB with
the SD equation in the Landau gauge. It is however in-
teresting to study the possible relation between DCSB
and color confinement in the SD formalism. To this end,
it is also meaningful to investigate the SD equation in
other choices of the gauge such as the maximally Abelian
(MA) gauge [31]. Actually, the dual Ginzburg-Landau
theory, a model of QCD in the MA gauge [32], indi-
cates that DCSB is caused by the strong enhancement
of the Abelian gluon propagator due to monopole conden-
sation [15], which leads to quark confinement. In a sim-
ilar context, the authors in ref. [16] demonstrated with
the SU(2) lattice gauge theory that the intermediate en-
hancement of the gluon polarization factor in the Landau
gauge is mainly due to center vortices, which would be
responsible to color confinement. In any case, to investi-
gate relations between DCSB and color confinement in our
formalism is one of the interesting future subjects.

It is interesting to apply these formalisms to a
finite-density system [27], since finite-density QCD is still
rather difficult to be studied within the present lattice
QCD ability.

In the near future, we expect that the combination of
lattice QCD and the nonperturbative formalism such as
the SD and the BS equations provides us a powerful tool
to clarify nonperturbative aspects of hadron physics based
on QCD [27,21]. In this framework, once accurate lattice
QCD data are given, more reliable results can be obtained.
Therefore, in order to establish this new framework, it is
much desired to obtain more accurate data on the quark
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and gluon propagators as well as quark-gluon vertex func-
tions [22] in both quenched and full lattice QCD [18].
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ogy “Nanometer-Scale Quantum Physics” by the Ministry of
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Appendix A. Numerical extraction of the SD

kernel

The problem to extract K(p2) from eq. (16) is catego-
rized as the inverse problem, which is generally difficult in
mathematics. Here, we show the detail on the numerical
extraction of the SD kernel K(p2) from eq. (16).

First, we make the transformation of the variable from
(p2, q̃2) to (α, β), as p2 = tanν α and q̃2 = tanν β. One of
the advantage of such a transformation is that we can map
the infinite range of p2, q̃2 ∈ [0,∞] to the finite range of
α, β ∈ [0, π/2]. As another advantage, by changing the
power ν in p2 = tanν α, we can adjust the “weight” on
the representation points of the integral variable. In this
case, we find that one of the most suitable solutions can be
numerically obtained, when the power in tanν α is fourth,
i.e., ν = 4. In fact, the SD equation (16) reads

M(tan4 α)

Z(tan4 α)
=

∫ π/2

0

dβ
4 tan3 β

cos2 β

×Θ(tan4 α, tan4 β)K(tan4 β). (A.1)

Second we discretize the variables α, β. We must care-
fully choose the discretization number. If the discretiza-
tion number is too small, the error due to the smallness of
discretization number becomes large. On the other hand, if
the discretization number is too large, the accuracy of the
calculation in solving the simultaneous equation becomes
worse. Therefore, we should seek for the appropriate dis-
cretization number N , and find that it is about 300 in this
case. After making the discretization of α, β, we get the
discretized SD equation,

Mn

Zn
= h

N
∑

m=1

4 tan3(mh)

cos2(mh)
ΘnmKm, (A.2)

where α = nh, β = mh, h ≡ π/2
N , N ' 300, Mn ≡

M(tan4(nh)), Zn ≡ Z(tan4(nh)), Kn ≡ K(tan4(nh)) and
Θnm ≡ Θ(tan4(nh), tan4(mh)). Then, we can solve the
simultaneous equation (A.2) for Kn, and obtain the SD
kernel K(p2).

It is worth mentioning that Kn takes a small value
in the infrared region but seems rather noisy in the ultra-
infrared region as p2 < 0.1GeV2, since Kn in this region is
not so important for the determination of the quark mass

function. In such a case, we introduce an ultra-infrared
cutoff for Kn.

After the numerical extraction of K(p2), we have con-
firmed that the obtained SD kernel K(p2) reproduces
the lattice quark propagator by solving the SD equation.
Therefore, this procedure certainly works well in this case.
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